

Delhi Skill and Entrepreneurship University

Effective from Academic Year 2022-23

Program Information

Introduction

Delhi Skill and Entrepreneurship University offers a two-year Masters's Degree Program in Technology (Mechanical Engineering). The program allows students to train in a promising and job-creating sector. The students will acquire a wide range of skills such as – understanding the technical and functional environment of Mechanical Engineering related domain; understanding emerging technologies; learn industry best practices, thereby helping them develop several skills. Students will be exposed to practical knowledge along with the classroom theoretical and practical sessions. The program intends to make a significant contribution toward the development of skilled technical manpower and aid the progress of the nation.

Program Objectives

Delhi Skill and Entrepreneurship University's M.Tech (Mechanical Engineering) with specialization in Design, Production, and Thermal Engineering program provides the students with an in-depth understanding of key theoretical concepts and intensive practical training to enable them to emerge as proficient engineers in Mechanical Engineering. The prime objective of the program is to

- Provide fundamental and advanced knowledge and expertise in order to produce competent, creative, and imaginative engineers with strong scientific acumen.
- Promote independent and collaborative work, while demonstrating the professional and ethical responsibilities of the engineering profession.
- Promote the development of intellectual property by publishing articles in high-impact factor journals, conference proceedings, and patents.

The program will help graduates excel by applying knowledge of design, production, and thermal engineering to create novel products and solutions for complex problems. Graduates will be able to build up adequate communication skills, proficient personalities and moral esteems to be good human beings, responsible citizens, and capable experts.

Pedagogy and Teaching Methodology

Developed with the support of experts from the industry and subject matter experts from several renowned academic institutions, this program's effective pedagogy will aid in skilling young professionals. Focus on real-world examples, activity-based learning, in-campus laboratory training, and internships will lead to the holistic development of students pursuing this course. This will give them much-needed practical exposure that is currently lacking across most institutions. Classroom training is interspersed with industry visits, guest lectures, and project assignments.

Credit Scheme

Semester I			
SI No.	Course Code	Course Name	Total Credits
1.	MT-ME-ES-101	Modeling Simulation and Analysis	4
2.	MT-ME-ES-102	Heat and Mass Transfer	4
3.	MT-ME-ES-103	Experimental Methods for Solids and Fluids	3
4.	MT-ME-ES-104	Materials and Structure-Property Correlations	3
5.	MT-ME-BS-101	Research Methodology & IPR	2
6.	MT-ME-AU-101	Personality Development through Life Enlightenment Skills. (Audit Course-I)	0
Total			16

Semester II				
SI No.	Course Code	Course Name	Total Credits	
1.	MT-ME-PE-2XX	Program Elective I	3	
2.	MT-ME-PE-2XX	Program Elective II	3	
3.	MT-ME-PE-2XX	Program Elective III	3	
4.	MT-ME-PE-2XX	Program Elective IV (Thrust Area)	3	
5.	MT-ME-ES-205	Scientific Computing Lab	2	
6.	MT-ME-ES-206	Mini Project /Seminar	2	
7.	MT-ME-AU-201	Sustainable Development (Audit Course-II)	0	
Total			16	

Note: For Audit Course – I & II, Credits are zero but need to qualify with 50% marks

Semester III				
SI No.	Course Code	Course Name	Total Credits	
1.	MT-ME-PE- 3XX	Program Elective V	3	
2.	MT-ME-OE-3XX	Open Elective	3	
3.	MT-ME-ES-301	Dissertation Phase I	10	
Total			16	

Semester IV				
SI No.	Course Code	Course Name	Total Credits	
1.	MT-ME-ES-401	Dissertation Phase II	16	
Total			16	

List of Electives

Specialization	Description	Subject Title	Code
		Finite Element Methods	MT-ME-PE-201
Design		Advanced Mechanical Engineering Design	MT-ME-PE-202
		Applied Elasticity	MT-ME-PE-203
		Operations Management	MT-ME-PE-204
Production	Program Elective	Functionally Graded Materials	MT-ME-PE-205
	I	Machining Sciences	MT-ME-PE-206
		Computational Fluid Dynamics & Heat Transfer	MT-ME-PE-207
Thermal		Computational Methods in Thermal Engineering	MT-ME-PE-208
		Combustion Modelling	MT-ME-PE-209
		Advanced Mechanics of Solids	MT-ME-PE-210
Design		Design against Fatigue and Fracture	MT-ME-PE-211
		Advanced Vibrations and Acoustics	MT-ME-PE-212
		CNC, DNC and Adaptive Control	MT-ME-PE-213
Production	Program Elective	Reliability & Maintenance Engineering	MT-ME-PE-214
	Ш	Thermo Fabrication Processes	MT-ME-PE-215
		Advanced Fluid Mechanics	MT-ME-PE-216
Thermal		Convective and Radiative Heat Transfer	MT-ME-PE-217
		Two-Phase Flow Heat Transfer	MT-ME-PE-218
		Product Design and Development	MT-ME-PE-219
Design		Computer-Aided Design	MT-ME-PE-220
		Metal Forming and Analysis	MT-ME-PE-221
		Computer Integrated Manufacturing	MT-ME-PE-222
Production	Program Elective	Metal Forming Technology	MT-ME-PE-223
	III	Automation of Production System	MT-ME-PE-224
		Heating, Ventilating and Air-Conditioning	MT-ME-PE-225
Thermal		Advanced Energy Systems	MT-ME-PE-226
		Advanced Thermodynamics	MT-ME-PE-227
		Robotics	MT-ME-PE-228
		Industry 4.0	MT-ME-PE-229
		Renewable Energy	MT-ME-PE-230
Elective IV (T		Artificial Intelligence	MT-ME-PE-231
Common to All		Electric Vehicle	MT-ME-PE-232
		Mechatronics	MT-ME-PE-233
		Additive Manufacturing	MT-ME-PE-234
		Mechanics of Composite Materials	MT-ME-PE-301
Design	Program Elective	Engineering Tribology	MT-ME-PE-302
Design	V	Theory of Plasticity	MT-ME-PE-303

		Work-Study and Ergonomics	MT-ME-PE-304
Production		Advance Manufacturing Method	MT-ME-PE-305
		Flexible Manufacturing Systems	MT-ME-PE-306
Theresel		Cogeneration & Waste Heat Recovery Systems	MT-ME-PE-307
Thermal		Thermal Design	MT-ME-PE-308
		Gas Turbines & Compressors	MT-ME-PE-309
		Total Quality Management	MT-ME-OE-301
		Optimization Techniques	MT-ME-OE-302
Open Elective Common to All		Entrepreneurship	MT-ME-OE-303
		Supply Chain Management	MT-ME-OE-304
		Industrial Statistics	MT-ME-OE-305
		Design of Experiments	MT-ME-OE-306